Optimal control of nilpotent systems: a sub-Riemannian approach

نویسنده

  • F. Monroy-Pérez
چکیده

We present a general framework for the optimal control of driftless nonlinear systems defined by means of distributions of smooth vector fields that generate nilpotent Lie algebras. A smooth varying inner product on the planes of the distribution, yields the energy functional that allows to approach the optimal control problem as a sub-Riemannian geodesic problem. This class of systems is relevant because provides good models for nonholonomic systems in mechanics and automation as well as in classical particle physics. We discuss two examples of nonholonomic systems within this formalism, the Cartan geometry that corresponds to the problem of rolling without slipping or twisting, and the classical Foucault pendulum that is accepted as indisputable demonstration of the Earth’s rotation movement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On 2-step, corank 2 nilpotent sub-Riemannian metrics

In this paper we study the nilpotent 2-step, corank 2 sub-Riemannian metrics that are nilpotent approximations of general sub-Riemannian metrics. We exhibit optimal syntheses for these problems. It turns out that in general the cut time is not equal to the first conjugate time but has a simple explicit expression. As a byproduct of this study we get some smoothness properties of the spherical H...

متن کامل

Quadratures of Pontryagin Extremals for Optimal Control Problems

We obtain a method to compute effective first integrals by combining Noether’s principle with the Kozlov-Kolesnikov integrability theorem. A sufficient condition for the integrability by quadratures of optimal control problems with controls taking values on open sets is obtained. We illustrate our approach on some problems taken from the literature. An alternative proof of the integrability of ...

متن کامل

Symbolic Computation of Variational Symmetries in Optimal Control

We use a computer algebra system to compute, in an efficient way, optimal control variational symmetries up to a gauge term. The symmetries are then used to obtain families of Noether’s first integrals, possibly in the presence of nonconservative external forces. As an application, we obtain eight independent first integrals for the sub-Riemannian nilpotent problem (2, 3, 5, 8). Mathematics Sub...

متن کامل

Symbolic computation of variational symmetries in optimal control 1 by Paulo

Abstract: We use a computer algebra system to compute, in an efficient way, optimal control variational symmetries up to a gauge term. The symmetries are then used to obtain families of Noether’s first integrals, possibly in the presence of nonconservative external forces. As an application, we obtain eight independent first integrals for a sub-Riemannian nilpotent problem (2, 3, 5, 8).

متن کامل

The Purcell Three-link swimmer: some geometric and numerical aspects related to periodic optimal controls

The maximum principle combined with numerical methods is a powerful tool to compute solutions for optimal control problems. This approach turns out to be extremely useful in applications, including solving problems which require establishing periodic trajectories for Hamiltonian systems, optimizing the production of photobioreactors over a one-day period, finding the best periodic controls for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009